
on the method of successive approximations. Comparison shows that the disagreement between 
the results equals on the average • The dependences shown in Fig. 4 are generalized by 
the formula 

= 0.03 (1.02 -- E ~ ,5) + (4,7 -- 3,2 lg E) Re~. 10 -6. (4) 

The losses of head in descending dispersed-annular flow can be easily determined with 
the help of the dependences (i), (3), and (4) obtained above. 

NOTATION 

d and Z, diameter and length of the pipe; 0, density; ~, dynamic viscosity; w, velocity; 
g, acceleration of gravity, o, surface tension; F, mass density of irrigation; J = F(~dlo)-*, 
specific loss intensity; ~o = i m; E, relative mass fraction of loss; c, mass concentration of 
drops in the gas volume; AP, friction losses; T, tangential stress on the interface; 6, resis- 
tance coefficient; 6, thickness of the film; Rel = 4F~7*; Re2 = w~0=U[2; Fr2 = w~(gd)-*; 6* = 
6(gp~)~s; ~* = ~6a-*. Indices: i, liquid; 2, gas. 

i, 

2. 
3. 

4. 

5. 

6. 
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EFFECT OF TEMPERATURE-INDUCED PHASE SEPARATION IN TWO-PHASE FLOWS 

I. M. Shnaid and N. Zh. Simon UDC 532.529.5:536.7 

The results of a theoretical study of the fact that on expansion of an adiabatic 
two-phase flow in a nozzle the stagnation temperature of one of the phases rises 
above while that of the other drops below the initial value are presented. 

Temperature-induced phase separation occurs with adiabatic expansion of a stationary two- 
phase flow in a nozzle. If after expansion the phases are stopped and rapidly separated, it ~ 
is possible to obtain two systems with substantially different temperatures. This effect was 
confirmed experimentally by Stolyarov [I, 2], who performed experiments on the expansion of 
a mixture of compressed air with finely dispersed liquid particles in a nozzle. In the case 
of particles of water after stagnation and separation of the phases artificial snow formed at 
the outlet. For expansion of air with kerosene or a water solution of diethylene glycol, after 
stagnation and separation of the liquid phase, the temperature of the liquid phase was lower 
than 0~ An analogous effect is the basis for the so-called "snow gun" [3]. According to 
the experimental data, the temperature-induced phase separation permits obtaining quite low 
temperatures and the effect can be employed for refrigeration. However, the well-known theo- 
retical investigations of two-phase flows [4-7] do not contain an analysis of the physical 
essence of this effect. The purpose of this work is to give a theoretical description of 
the temperature-induced phase separation in a two-phase jet. 

We shall first study the equilibrium adiabatic flow of a two-phase medium for which the 
static (thermodynamic) temperatures of the phases and their velocities are identical. We 
shall make the standard assumptions that the heat capacity of the liquid (solid) and gaseous 
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phases are constant, the specific volume of the liquid (solid) phase is constant, and we 
shall neglect the thermodynamic effects caused by dispersion of the liquid (solid) phase in 
the flow and evaporation or condensation. In this case the stagnation temperature of the 
phases are different: 

w2 
T~o = T + ~ ; (1)  

2C~a 

w 2 Ap 
Tb0 = T + ~ + PbCb (2) 

The term AP/0bCb in the formula (2) is usually neglected. Therefore Tao > Tbo, if Cpa < Cb; 
Tao < Tbo if Cpg > Cb; and Tao = Tbo if Cpa = c b. So, the stagnation temperatures of the 
phases in an equilibrium two-phase flow are different, if the heat capacity of the phase are 
different. 

It is obvious that in the process of expansion the total energy of the gas changed by the 
amo un t 

AE=-=G= iaf--i= t + -=G= ewT f - e p = T  i + - - - 7  , 

while the total energy of the particles changed by the amount 

In  t h e s e  e q u a t i o n s  and b e l o w  we s h a l l  n e g l e c t  t h e  s m a l l  t e r m s  Ap/p b and we s h a l l  a s s u m e  
that Cpa = const and c b ffi const. Since the expansion occurs without work being performed, 
the total energy of the gas and the particles remains unchanged, and therefore 

AE~ + AE b = 0 

o r  
~2 W2 

Gacpa (Tf -- Ti) + Ga "-7 + Gbcb (Tf - -  Ti) + G b 2 = 0. (3) 

From the formula (3) we find the kinetic energy per unit mass: 

w z (Gacpa + GbCb) (Tt - -  Tf ) 
= G~ + G~ = [~C~a + ( 1 - -  ~) Cb] (Ti - -  Tf). 

Then we can determine the difference of the final and initial stagnation temperatures of the 
gas" 

w--~-2 = ( l - - ~ ) (  c.  1) (T i - - T f ) .  (4) Tao'-- T i = T f - -  T i + 2cpa _ cpa 
g 

In an analogous manner we can determine also the difference of the temperatures for the par- 
ticles : 

T b ~  + 2c-"-~ = ~  CPacb 1 ( T i - - T f ) .  (5) 

Analyzing Eqs. (4) and (5) we can draw the following conclusions: the final stagnation tem- 
peratures of the phases are in general different and depend on the ratio of the heat capaci- 
ties of the phases. 

At the same time, if Cb/Cpa > I, then Tao > Tiand Tbo < Ti, which is observed in experi- 
ments on expansion of two-phase jets of air with finely dispersed particles of water, kero- 
sene, or diethylene glycol [i, 2]. In the case when Cb/Cpa < i, Tao < T i and Tbo > Ti. Thus, 
for an equilibrium flow the sign of the temperature-induced phase separation effect is de- 
termined by the inequality Of their specific heat capacities. This case is analyzed in [8, 
9]. It should be noted that the temperature-induced phase separation effect can be used in 
practice only with rapid stopping and fast separation of the phases. If the stopping and 
separation of the phases occurs quite slowly, so that thermorelaxation of the phases occurs, 
the equilibrium temperature of the phases will be close to the initial temperature. 
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Let us examine the conditions for the appearance of the temperature-induced phase sep- 
aration effect with a two-temperature and two-velocity flow. We shall make the usual assump- 
tions: the flow is stationary and there is no heat exchange with the walls, the paricles are 
spherical and of the same size, collisions between particles are neglected, the temperature 
is the same inside the particles, there is no mass transfer in the system, the gas is ideal, 
the viscosity is taken into account only by interaction forces between phases, there are no 
external mass forces, and the heat capacities of the phases are constant. We shall study a 
quasi-one-dimensional two-phase flow in nozzles, where both phases have at the inlet the same 
thermodynamic temperature T i and expand from the initial pressure Pi- We shall find the pres- 
sure distribution p(x), the distribution of the thermodynamic temperatures of the phases T~(x) 
and Tb(x), and the velocity distributions of the phases wa(x) and Wb(X ). These functions are 
determined by the system of equations 

d~b 
~b - A (w~ - -  wb); ( 6 )  

dx 

W b - -  
dTb = D[Ta_}_r (Wa--Wb)Z Tb] ; (7) 
dx 2Cpa 

w~ 1--~ c b Tb+  1--~ m~ =CI; (8) 
T~ +-2-~v  ~ + --~ Cpa T 2cp~ 

dw~ dwb { 
~ w ~ - ~ ( 1 - - ~ ) w  b -dx - -  [ O= q- - -  

i--~ ~ d_s (9) 
P b ]  dx ' 

p = PaRaT~, (I0) 

where C = Go/(Ga + G b) is the relative mass fraction of the gas. In the equation of dynam- 
ics (6) 

3 P~ I w ~ - - w b j  (ii) 
A .~- , c D - -  

8 Pb rb 

Equation (7) describe the heat exchange with a liquid (solid) particle. Unlike the well-known 
x4orks [4-7] it takes into account the characteristics of heat transfer under conditions of 
high relative velocities (wa- w b) of the gas and of the particles. For this reason a dimen- 
sionless coefficient describing the restoration of the temperature r is introduced in it, and 
the computed temperature difference is determined taking into account the kinetic energy of 

the flow in relative motion: Ta+r (wa-wb)z Tb. In addition, 
2Cpa 

3 Nu ~a (12) D 2Cbpbr~ 
Equat ions  (6 ) - (10)  form a n o n l i n e a r  system, which cannot be solved a n a l y t i c a l l y  in the  

general case. For this reason we shall find analytic solutions for the system of equations 
for a model case, when the Re numbers are small (C D = 24/Re, Nu = 2), so that A = const and 
D = const, while the velocities w a and w b are linear functions of the coordinates: wa = ax, 
w b = 8x. From Eq. (I0) we find the equation relating a and ~ [4]: 

l = -~- [ l / A  2 -~ 4Aa -- A]. (13) 

We substitute the value of the thermodynamic temperature of the gas T a from the equation of 
heat transfer (7) into the equation of conservation of energy of the flow (8) and we inte- 
grate the linear differential equation so obtained. Taking into account the initial condi- 
tions we obtain the distributions of the thermodynamic temperatures of the particles Tb(X) 
and of the gas Ta(x): 

T b (X) -~ T[ r162 x~-; (14) 
2Cpa 
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where 

From Eqs. (14) and 
(solid) and gas phases: 

Ta (X) = T i 052MA 
2Cp~--~ xz' ( 15 ) 

MB = 1 + m i k  2 -  r (1 -- k) 2 . 
cb +2--~- -g  ' 

C~a D 

M A = M B  (1 + 2 @ ]  +r ( l - -k )Z;  

mi = (1 --. ~)1~; k = I~m. 

(15) we find the difference of the stagnation temperatures of the liquid 

Tbo Ti  1 (~2MB. 132) . . . . . .  x2; (16) 
2 Cpa C b 

052 
Tao - -  Tt  -- ( M A - -  1)x z. (17) 

2Cpa 

We substitute into the equation of flow dynamics (9) the velocities of the phases w a = ax and 
w b = 8x and we obtain the following expression: 

dp _ [~z + (1 -- ~) ~2] (18) 
dx ~ ( 1 +  ' - - ~  P a ) x .  

9a ~ Pb 

The differential equation (18) is strongly nonlinear. We shall employ the perturbation method 
to analyze the most con~non case, when the volume of the liquid (solid) phase is much smaller 
than the volume of the gas phase (i -- ~)/Ob << ~/Oa. The approximate solution of Eq. (18) 
sought can be represented as a sum 

p(x) = po(x) -I- Pt (X), (19) 
where po(x) is the solution of Eq. (18) with a = (i -- ~)/Pb = O, while p,(x) is a small per- 
turbation, determined by the fact that a ~ 0, p1(x) << po(x). Then Eq. (18) implies that 

@___z_o = _  [~r162 x; ( 2 0 )  
dx 

dx ~ ~ 9b 

Equation (21) is linearized taking into account the fact that (apa/~) << i. First we inte- 
grate the differential equation (20), substituting into it the value of Ta(x) from (15). 
Taking into account the initial conditions 

x = 0  po(0)=piand Ta(0)=T 
we obtain 

where 

po(x) = Pi (22) 
(Ti /r=). ,  ' 

m-- C;)a [~=2 ~- (l -- ~) Pz] (23) 

Substituting 
p,(O) = O, we find p,(x). The approximate solution of Eq. 
perturbations, has the form 

(22) into (21) and integrating the equation with the initial condition 
(18), obtained by the method of 
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where 

p,(x) ] p(x)~po(X) l+ ~ -  , (24) 

p, (x.__.__.~) __ n ~  [6 (0) - -  a (x)] - -  n z [•z (0) - -  a 2 (x)]; (25) 
Po (x) 2m --  i 3m -- 2 

6'(x) = apo 
~RaTa (26) 

The f o r m u l a s  (24) and (25) a r e  v a l i d  f o r  6(x)  << 1. 

We shall use the relations (16) and (17) to analyze the conditions for the appearance 
of the temperature-induced phase separation effect. In so doing, as follows from the energy 
equation (8), the temperature differences Tbo -- T i and Tee -- T i have opposite signs. The 
formula (16) implies that the temperature difference Tbo -- T i is negative, if (we assume that 
r = i) 

cpa ~z M B < 0 .  (27) 
Cb ~2 

We substitute into the inequality (27) the expression for M B and after elementary trans- 
formations we find the equivalent inequality 

2 m ~ - - l +  - -  
Cpa 

Cb l + mi , cb ~ + 2, ~ <0 ,  
Cp. D 

o r  

cp= 2 - -  k < 0. (28) 

k+2 -b- 7 
Cb 

In its turn, in accordance with the formula (13), 8k/A = 1 -- k. 
ity (28) assumes the form 

c'~ [ k + 2 ( - - ~ - ) ( 1 - - k )  ] 

For small Re numbers, when C D = 24/Re, Nu = 2, 

__A = 3 p~cva Cb = __3 pr a _ c  b 
D 2 ~,. cp~ 2 cr~ 

Then the sign of the temperature difference Tbo --Ti is negative, if 

.,1 (.Cva + l - - 3 P r a )  k + ( P r ~ - - @ ) < O .  (29) 
3 cb 

It is easily established that the sign of Tbo --T i is positive if the left side of expres- 
sion (29) is positive and Tbo --T i = 0 if it equals zero. So, the sign of the temperature 
difference Tbo --Ti is the same as the sign of the function 

where 

Therefore the inequal- 

Y = ~ ' r  k + 3~r, (30) 

Mr=--3--1 ('.CP.cb + l - - 3 P r a )  " ~ T = p r = - ~ "  p r " = - '  32 , p~cp~ 

Thus, if y # 0 temperature-induced phase separation is observed! if y = 0, then Tbo = Tee 
and the effect does not occur. In the case when y < 0 the liquid (solid) phase cools, while 
the gas phase is heated. For y > 0 the liquid (solid) phase is heated, while the gas phase 
is cooled. Analysis of the formula (30) shows that: 

i) the liquid (solid) phase is heated, while the gas is cooled in the following cases: 
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la) cp~/cb> 1 for P r ~ 2 / 3 ,  k <  1; 

]b) cga/cb< 1 for Pra>2/3, k<ko; 
lc) cpJcb= 1 for P r a > 2 / 3 ,  k <  1; 

id) cpalc b �9 i for any number Pra, k = i (equilibrium flow); 

2) the liquid (solid) phase is cooled, while the gas is heated in the following cases: 

2a) cpJcb<l ~r P r ~ > 2 / 3 ,  k o < k < l ;  

2b) Cpa/C b < I for any Pra, k = i (equilibrium flow); 

3) the stagnation temperatures of the phases are equal and there is no effect if 

3a) cpalo b = I for Pr a = 213 and any k < I; 

3b) Cpa/C b = I for any Pr a, k = i (equilibrium flow); 

3c) Cpa# c b, Pr a # 2/3, k = k 0. 

Here the quantity ko = ~T/a/T corresponds to the point of inversion y = 0. 

The theoretical results obtained above were confirmed qualitatively experimentally in 
[i, 2, I0]. In [i0] the results of experiments on the expansion of air with AI20, particles 
in a nozzle were studied. The stagnation temperature of the solid phase was essentially 
measured and it turns out that Tbo -- T i > 0- the solid phase was heated. It is easy to estab- 
lish that in the experiments studied Cpa/C b > i, Pr a �9 2/3. Thus the experiments correspond 
to the case la) and the theoretical prediction agrees with the experimental result. 

The experimental results contained in [1, 2] can be analyzed in an analogous manner, 
and it can be shown that the observed cooling of the liquid phase corresponds to the case 2a). 

The previously obtained formulas also enables an approximate calculation of the tempera- 
ture-induced phase separation effect in real two-phase flows for Reynolds numbers Re �9 i. In 
this case the quantities A and D may be assumed to be constant and equal to the average values 
over the flow and the system of equations can be solved by the iteration method. As a result 
the distributions of the thermodynamic temperatures Ta(x) and Tb(X), the stagnation tempera- 
tures Tao(X) and Tbo(X), as well as the pressure p(x) were calculated under conditions cor- 
responding to the data of [i]: Z = 0.17 m, Pi = i.i MPa, p(/) = 0.i MPa, T i = 283~ the working 
mixture consists of air and a water solution of diethylene glycol (Fig. 1). We assume that 
d b = i0 ~m. Figure 1 also shows the experimental values of Tao(Z) and Tbo(~) taken from the 

work cited. 

NOTATION 

T, thermodynamic equilibrium temperature of the mixture| Ta, thermodynamic temperature of 
of the gas phase; T b, thermodynamlc temperature of the liquid (solid) phase; Tao, stagnation 
temperature of the gas phase; Tbo, stagnation temperature of the liquid (solid) phase; w, 
velocity of the mixture, w=, velocity of the gas~ w b, velocity of the particles; p, density; 
~, thermal conductivity; Cp~ and Ra, specific isobaric heat capacity and the gas constant; 
cb, specific heat capacity of the particles; Ap, pressure increment; T i, initial tempera- 

p T 
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ilO 80 120 I/~n x 

Fig. i. Distribution of the temperatures 
Ta(x) (i), Tb(X) (2), Tbo(x) (3), Tae(x) 
(4), and pressure p(x) (5) along the 
axis of the nozzle (the points are the 
experimental data), p, MPa; T,~ x, ram. 
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ture; Pi, initial pressure; x, coordinate; A and D, auxiliary quantities, determined by the 
relations (i0) and (12); r, temperature restoration coefficient; ~, relative mass fraction 
of the gas phase; C,, a constant; Re, Reynolds number; Pr, Prandtl's number; ~a, dynamic 
viscosity of the gas; d b, r b, diameter and radius of the particles, respectively; CD, coef- 
ficient of resistance of a spherical particle; Nu, Nusselt number; ~ and 8, coefficients 
of proportionality of the velocity; mi, ratio of the mass flow rates of the liquid (solid) 
and gas phases; k, ratio of the velocities of the liquid (solid) and gaseous phases; a = (i -- 
~)/Pb; Po, pressure for a = 0; p,, a small pressure perturbation for a # 0; m and 6, quan- 
tities determined by the formulas (23) and (26); y, an auxiliary function, determined by 
the expression (30); Z, length of the nozzle. Indices: a, gas phase; b, liquid (solid) phase; 
i, initial state; and f, final state. 
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PLOW STABILITY OF A FILM OF VISCOUS LIQUID ON THE SURFACE OF A 

ROTATING DISK 

G. M. Sisoev and V. Ya. Shkadov UDC 532.516 

The stability of a steady axisymmetric flow of a film is studied using the assump- 
tion of local plane parallelity. We present the results of numerical calculation. 

The flow of a film along the surface of a flat rotating disk is encountered in many tech- 
nological processes. An example is the preparation Of metal powder by the centrifugal method. 
In the present work we study the linear stability of a steady axisymmetric flow of a film with 
a relatively small thickness. 

Let us suppose that a viscous incompressible liquid is supplied at a constant flow rate 
near the center of a rotating disk. To describe the flow of the film which is formed on the 
disk we choose the functions [I] 

Ur v =  1 u- - -L- -1  , w = - - ,  p = - - ,  

u = ~ r ~  , ~ 2  ~ r  ~H~6 z o~2H~ 

where 6 = Hc~7~. The independent variables are chosen as x = in(r/R), 0, y = Z/He, s = ~t/6 a. 

The functions u, v, w, and p, which depend on x, 0, y, and s and on the form of the free 
surface of the film h(x, e, s), are determined by solving the system of Navier--Stokes equa- 
tions, the sticking and impermeability conditions on the surface of the disk, the kinematic 
condition on the free surface where we have also the conditions of zero tangential stress 
along two directions, and the condition that the stress normal to the surface in the liquid 
is equal to the stress of capillary forces [i]. 
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